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Abstract

This paper has two objectives. Firstly, it seeks to promote discussion and debate about the need to
encourage experimentation of the claims in the field of software engineering. The software community’s
lack of concern for the need for the aforesaid experimentation is slowing down adoption of new
technology by organizations unfurnished with objective data that show the benefits of the new artifacts to
be introduced. This situation is also leading the introduction of new software technology to be considered
as a risk, because, as it has not been formally validated beforehand, its application can cause disasters in
user organizations. The second objective is to present a formal method of experimentation in SE, based
on the experimental design and analysis techniques used in other branches of science.

1. Introduction

Companies are continuously developing new, increasingly complex and, ultimately, more expensive
software systems. This should be a condition for applying the range of development artifacts in a reliable
manner. Paradoxically, however, real-world developments are often used as a culture medium for
validating these artifacts, with the ensuing risks. There is no denying, unfortunately, that the models and
theories outputted by Software Engineering (SE) research are not checked against reality as often as
would be necessary to assure their validity for use in software construction. This can lead to justified
distrust when applying the new solutions developed at laboratories or research centers in industry.

It is, therefore, essential to apply a process of experimental testing to validate any contribution made to
SE. This paper seeks to highlight the need for an empirical validation of all artifacts used in SE, and then
proposes an approach to introduce this based on experimental design techniques, widely used in other
fields of science and engineering. Other researchers, including Basili [Basili, 86] and Pfleeger [Pfleeger,
95], have published work on experimental design and SE. In this paper, we aim to address in detail
particular points, such as the parameters to be controlled in a SE experiment, and will set out several
examples of how different types of experimental design can be applied to SE.

So as show the lack of empirical validation in the field of SE, the authors have compared what we have
called the essence of the scientific method with SE research. The essence of the scientific method relates
to certain characteristics common to the different methods of research with regard to the manner of
attaining new knowledge. These common features can be divided into the following activities:

• Interaction with reality, which involves obtaining facts from reality. It can be performed by means of
observation, where researchers merely perceive facts from the outside, or by means of
experimentation, where researchers subject the object to new conditions and observe the reactions.

• Speculation, where researchers think about the perception obtained from the outside world. The
results of this thinking range from a mere description of particular cases, through hypotheses and
models, to general laws and theories.

• Checking ideas against reality in order to assure the truth of the speculations. It can safely be said
that it is this stage that lends research its scientific value, as the stages of interacting with reality and
speculation occur in other intellectual disciplines far from being considered scientific; for example,
philosophy, religion, politics, etc. A branch of human knowledge attains the status of scientific when
speculations are verifiable and, therefore, valid (although this status is always held provisionally until
contradicted by a new reality). Remember that engineering fields depend on scientific knowledge to
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build their artifacts.

When comparing the essence of the scientific method and research in SE, there are a series of
discrepancies, including importantly the lack of emphasis on the experimental validation activity. In fact,
present scientific progress in the software community appears to be based on natural selection. That is,
researchers throw their lucubrations into the arena almost untested. After a few years or decades,
theoretically, the fittest survives. Note the risk involved in this manner of scientific progress, as fashion,
researcher credibility, etc., also play a prominent role in science. This way of selecting valid knowledge
involves important risks when industry applies this new knowledge.

Statements claiming that SE experimentation is not needed can be heard frequently in SE. One of the
arguments is that the “Romans built bridges and were not acquainted with the scientific method”.
Obviously, humans can generate valid knowledge by means of trial and error. However, this approach is
longer and more chancy than the scientific method. If a critical software system fails and causes a
disaster, could we say that we in SE prefer the old trial-and-error approach rather than experimental
validation as called for by the scientific method? Another justification used to refute SE experimentation
is based on trusting in intuition. Several examples can be used to reject this statement, for example, the
fact that small software components are proportionally less reliable than larger ones, as reported by Basili
[Basili, 94] among others. In  [Tichy, 98] the author presents some arguments traditionally used to reject
the usefulness of experimentation in this area with the corresponding refutation.

Although there are some experimental studies in the computer science literature [Prechelt, 98] [Frankl,
93] [Seaman, 98] [Iyer, 90], this is not the general rule. The want of experimental rigor in SE has already
been stressed by authors like Zelkowitz [Zelkowitz, 98] or Tichy  [Tichy, 93] [Tichy, 95], who base this
affirmation on a study of the papers published in several system-oriented journals. Surveys such as
Zelkowitz’s and Tichy’s tend to validate the conclusion that the SE community can do a better job in
reporting its results, making them more trustworthy and thus making it easier for industry to adopt the
new research results.

2. Experimental Design for Software Engineering

Once that the need for empirical validation in SE has been assumed, the authors propose an approach to
introduce it based on experimental design techniques [Box, 78] [Selwyn, 96] [Clarke, 97] [Edwards, 98]
used in others fields of science.

Empirical validation can be carried out in several situations : laboratory validation of theories, validation
at the level of real projects and validation by means of historical data. Unlike the other two methods,
laboratory validation allows greater control of the different parameters that affect software development.
Real projects allow data considered to be relevant for the study in question to be collected. Validation
using historical data allows researchers to work with data on finished projects, employing the most
relevant for the experiment to be conducted. Zelkowitz [Zelkowitz, 98] and Kitchenham [Kitchenham, 96]
suggested similar classifications. Zelkowitz groups experimental approaches into three broad categories:
controlled methods, observational methods and historical methods, while Kitchenham refers to these
categories of experimentation as formal experiments, case studies, and surveys. An example of
experimentation with real projects is the experience factory proposed by Basili [Basili, 95], historical data
have been applied by McGarry [McGarry, 97] among others, and formal experiments have been studied
by Pfleeger [Pfleeger, 95] in the DESMET project.

In this paper, we focus on formal experiments and present an in-depth study of the application of
experimental design to SE empirical validation, placing special emphasis on the adaptation of
experimental design terminology to SE. Table 1 summarizes the above-mentioned experimentation
process. Table 2 describes the application of experimental design concepts to SE. Table 3 shows the value
of some of the experimental design concepts for SE experimentation. Finally, Table 4 presents a summary
of the experimental design techniques that can be applied.
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Phase of the experiment Description

Defining the Objectives of the
Experiment.

The mathematical techniques of experimental design demand that
experiments produce quantitative results. Therefore formal experimentation
in SE requires quantifiable hypotheses. This hypothesis will be usually
expressed in terms of a metric of the software product developed using the
software artifact to be analyzed or of the development process where this
artifact has been applied.

Designing the Experiment  In order to plan experimentation in SE according to experimental design
guidelines, its terminology has to be applied to SE. See table 2 with the
terminology employed in experimental design for generic experimentation,
and its application to experiments in SE.

The next step is to select the experimental design technique. This technique
will determine how many experiments are required, how many times each
experiment has to be repeated and what data we need to output to ascertain
the validity of the conclusions. There are different techniques of
experimental design depending on the aim of the experiment, the number of
factors, the levels of the factors, etc. Table 4 shows a brief summary of the
most commonly used experimental design techniques.

Executing Experiments The software engineer is now ready to execute the experiments indicated as a
result of the preceding design stage, measuring the response variables at the
end of each experiment.

Analyzing Results This stage is also called Experimental Analysis. The software engineer will
quantify the impact of each factor and each interaction between factors on the
variation of the response variable. This is what is referred to (according to
experimental design terminology) as “the statistical significance of the
differences in the response variable due to the different levels of each
factor”.

• If there is no statistical significance, the variation in the response
variable can be put down to chance or to another variable not
considered in the experiment.

• If there is statistical significance, the variation in the response variable
is due to the fact that a certain level (or combination of levels of
different factors) causes improvements in the response variable.

When we have understood the impact, we can ascertain which alternative of
which factor significantly improves the value of the response variable.

Depending on the experimental design technique applied in the preceding
stage, a different statistical technique must be used to achieve the above
objective. This is not the place to expound the underlying mathematics of
experimental analysis. Interested readers are referred to the references
already mentioned. Section 3 shows some examples of SE experiments
illustrating different experimental design and analysis techniques.

Table 1. Phases of the Experimental Design Process used for SE Experiments
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Concept Description Application in SE
Experimental
unit

Entity used to conduct the experiment Software projects

Parameters Characteristic (qualitative or
quantitative) of the experimental unit

See table 3

Response
variable

Datum to be measured during the
experimental unit

See table 3. Note there are no response
variables relating to the “problem”. This
is because response variables are data that
can be measured a posteriori, that is,
once the experiment is complete. In the
case of SE, the experiment involves
development (in full or in part) of a
software system to which particular
technologies are applied. The
characteristics of the problem to be
solved are the experiment input data, that
is, they stipulate how it will be
performed. As such, they are parameters
and factors of the experiment. However,
they are not experimental output data that
can be measured and, thus, do not
generate response variables.

Factor Parameter that affects the response
variable and  whose impact is of
interest for the study

Factors are chosen from the parameters in
table 3.  Factors have different values
during the experiment

Level Possible values or alternatives of the
factors

Values of factors in table 3

Interaction The effect of one  factor depends on
the level of another

Relations between the parameters in table
3; for example, problem complexity and
product complexity

Replication Repetition of each experiment to be
sure of the measurement taken of the
response variable

Repeatability in SE must be based on
analogy, not on identity; the different
experiments will consist of similar
problems, similar processes, similar
teams, etc.

Design Specification of the number of
experiments, selection of factors,
combinations of levels of each factor
for each experiment and the number of
replications per experiment

The design will indicate the number of
software projects, factors and their
alternatives that will be used during
experimentation, as well as the number of
replications of the experiments, based on
analogy.

Table 2. Application of experimental design concepts to SE
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PARAMETERS
PROBLEM
(User need)

PROCESSES
of construction

employed

PERSONS
 (team of developers)

PRODUCT

− Definition
 (poorly/well

defined problem)
− Need volatility
 (very/hardly/non

volatile need)
− Ease of

understanding
 (problem

well/poorly/fairly
well understood by
developers)

− Problem
complexity

− Problem type (data
processing,
knowledge use,
etc.),

− Problem-solving
type (procedural,
heuristic, real-time
problem solving,
etc.)

− Domain
(aeronautics,
insurance, etc.)

− User type (expert,
novice, etc.)

− Maturity
− Description (set of

phases, activities,
products, etc.)

− Relationship
between members
(definition of
interrelations
between team
members)

− Automation (in
which phases or
activities tools are
used)

− Risks

− Number of
members

− Division by
positions (no. of
software
engineers,
programmers,
project managers,
etc.)

− Years of
experience of each
member in
development

− Experience of
each member in
the problem type

− Experience of
each member in
the software
process applied

− Background of
each member
(discipline of
origin)

− Type of
relationship
between members
(all in the same
building, same
town,
subcontracts, etc.)

− Type of life cycle to be
followed

− Software type (OO,
databases, real time,
expert system, etc.)

− Size
− Complexity
− Architecture/Organizatio

n
− Hardware platform
− Interaction with other

software
− Processing conditions

(batch, on-line, etc.)
− Security requirements
− Response-time

requirements
− Documentation required
− Help required

RESPONSE VARIABLES
PROBLEM PROCESS PERSONS PRODUCT

− Schedule deviation
− Budget deviation
− Compliance with

construction process
− Products obtained

(do they comply
with the process
stipulations?)

− Productivity
− User satisfaction

− usability
− usefulness

− Correctness of products
obtained (no. of errors,
etc.)

− Validity of the products
(compliance with
customer expectations)

− Portability,
Maintainability,
Extendibility,
Performance, Flexibility,
Interoperability,…

Table 3. Proposal of Parameters and Response Variables for SE research
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Categorical 
Factors
    and
Quantitative
Experimental
Response

Quantitative 
Factors and
Response 
Variables

One factor of
interest
(2 or n levels)

All other parameters 
have been fixed

Some parameters are
irrelevant for the experiment
and can not be fixed

K  factors of interest
(2 or n  levels)

One factor experiment

Blocking Experiment

All levels of factors are relevant

Blocking 
Factorial Design

Factorial 
Design

Fractional
Factorial
Design

less than  n
k

experiments

nk experiments

With Replication

Without Replication

With Replication

Without Replication

{ {
{ {

Regression Models

Some parameters are
irrelevant

CONDITIONS OF THE EXPERIMENT EXPERIMENTAL DESGIN TECHNIQUE

Table 4. Different Experimental Design Techniques

3. Example of SE Experiments using Experimental Design

This section presents two examples of possible SE experiments employing the experimental design
process described in Table 1. Depending on the experimental desgin techinque used, different analysis
methods must be applied. During the experimental analysis phase, we will not enter into a detailed
justification of all the mathematical calculations; our objective is simply to give readers a taste of what
sort of work could be performed during an experimentation in SE, avoiding the tiresome, though simple,
calculations called for by experimental analysis.

3.1. One Factor Experiment

Suppose we are researching on a CASE tool, and we think it will increase programmers productivity. We
will compare this tool with two other tools widely used in industry and each experiment will be repeated
five times, in order to consider experimental errors. The response variable will be programmers
productivity (lines of code/person-day) and all other parameters of table 3 will be fixed. This is an
example of one factor experiment. This kind of experimental design is used to determine the best choice
of k alternatives (in our case of three alternatives).

Table 5 shows the fifteen observations of the response variable (column Z contains the values for the new
tool).

R V Z
144
120
176
288
144

101
144
211
288
72

130
180
141
374
302

Table 5. Value of the response variables
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The analysis if this experiment is shown in table 6. From this table we can know that the mean value of
productuvity of a CASE tool is 187,7 lines/person-day. The effects of tools R, V and Z are -13,3, -24,5
and 37,7, respectively. That means that tool R provides 13,3 lines less than the mean, tool V provides
24,5 lines less than the mean, and tool V provides 37,7 lines more than the mean.

R V Z
144
120
176
288
144

101
144
211
288
72

130
180
141
374
302

Sum of the column
Mean of the column
Effect of the column

Y•1∑ = 872

Y •1 = 174 .4

α1 = Y •1 − Y •• = −13 .3

Y•2∑ = 816

Y •2 = 163 .2

α2
Y •2 − Y •• = −24 .4

Y•3
= 1127∑

Y •3
= 225 .4

α
3Y •3

− Y •• = 37 .7

Y••∑ = 2815

µY •• = 187 .7

Table 6. Data from the experimental analysis of the example

The second step involves calculating the sum of the squared errors (SSE) in order to estimate the variance
of the errors and the confidence interval for effects. For that aim each observation will be divided in three
parts: the grand mean, the effect of the tool, and the residuals. For each part we have used a matrix
notation.

144 101 130

120 144 180

176 211 141

288 288 374

144 72 302

 

 

 
 
 

 

 

 
 
 

=

187 .7 187 .7 187 .7

187 .7

187 .7

187 .7

187 .7 187 .7

 

 

 
 
 

 

 

 
 
 

+

−13 .3 −24 .5 37 .7

−13 .3 −24 .5 37 .7

 

 

 
 
 

 

 

 
 
 

+

−30 .4 −62 .2 −95 .4

−54 .4 −19 .2 −45 .4

1.6 47 .8 −84 .4

113 .6 124 .8 148 .6

−30 .4 −91 .2 76 .6

 

 

 
 
 

 

 

 
 
 

SSE = 
j

a

i

r

==
∑∑

11
eij

2 = (-30,4)2+ (-54,4)2+ ... +(76,6)2 = 94.365,20

Next step is calculating the variation in the response variable due to the factor and to the experimental
error. For that aim we calculate the sum of squares total (SST).

SST = r
j
∑ � j

2 + SSE = 5 ((-13,3)2 + (-24,5)2 + (37,6)2) + 94.365,2 = 105.357,3

The percentage of variation in the response variable explained by CASE tools is 10,4%
(10.992,13/105.357,3). The rest of the variation 89,6% is due to experimental errors. That means that the
experiment has not been planned properly.

In order to determine whether the variation of 10,4% in the productivity has statistical significance we
have to use the ANOVA (Analysis Of VAriance) technique, with the F-test function and table (this table
is not included in the paper, readers can find them in the bibliography of experimental design mentioned
above). The technique seeks to compare the contribution of the factor to the variation in the response
variable with the contribution of the errors. If the variation due to errors is high, a factor that explains a
high variation in the response variable might has not statistical significance. In order to determine the
statistical significance we will compare the computed F-value with the value got from the F-table, as
shown in table 7.

Table 8 shows the ANOVA analysis for our example. The calculated F-value is smaller than the one got
from the F-table. Therefore, we can, again, conclude that the difference in productivity is mainly due to
experimental errors instead of to the CASE tools. In that sense, we can state that neither tool provides
more productivity than the others.
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COMPONENT SUM OF

SQUARES

PERCENTAGE

OF VARIATION

DEGREES

OF

FREEDOM

MEAN

SQUARE

F-

COMPUTED

F-

TABLE

Y

Y ••

Y − Y ••

A

e

SSY = Yij

2∑
SSO = ar µ 2

SST = SSY − SSO

SSA = r αi
2∑

SSE = SST − SSA

100

100
SSA

SST

 
 

 
 

100
SSE

SST

 
 

 
 

ar

1

ar-1

a-1

a(r-1)

MSA =
SSA

a − 1

MSE =
SSE

a(r − 1)

MSA

MSE

F 1 − α ; a − 1, a ( r − 1 )[ ]

S
e

= MSE

Table 7. ANOVA table for one factor experiments

Y
Y..

Y-Y..
A

Errors

633,639.00
528,281.69
105.357,31
10.992,13
94.365,20

100.00
10.4
89.6

14
2

12
5496.1
7863.8

0.7 2.8

S
e

= MSE = 7863 .77 = 88 .68

Table 8. ANOVA table for our experiment

3.2.  Factorial Design with Replication

Suppose that we have invented a new development paradigm that is completely different from the
structured and OO paradigms and want to confirm that our innovation improves development projects.
We will centre on correctness as the response variable, measured, for example, by the number of faults
emerging three months after software deployment. There are a lot of characteristics that have an impact
on this response variable: problem complexity, problem type, process maturity, team experience, software
complexity, integration with other software, etc. However, all of these will be fixed at an intermediate
value  (that is, they will be selected as parameters of the experiment), except development paradigm, and
software complexity which will be factors. Each factor will necessarily admit two alternatives to simplify
the calculations. According to experimental design guidelines, the factors, labelled with letters, and their
alternatives, labelled with level 1 and -1, are listed, as shown in table 9.

FACTOR NAME LEVEL -1 LEVEL 1

Paradigm

Software complexity

A

B

New

Complex

OO

Simple

Table 9. Factors and levels of the experiment

We will use a factorial design with replication as all levels of our factors are relevant for the experiment,
and we want to consider the experimental errors. In order to evaluate the experimental errors we will
repeat each experiment three times, so we will get twelve measurements of the response variable.

Taking the measurements of the response variable and the values assigned to the factors in table 9, the
first step of the experimental analysis is to build what is called the sign table. As shown in table 10, the
first column of the matrix is labelled I, and it contains all 1s. The next two columns, labelled with the
factor names, contain all the possible combinations of -1 and 1. The fourth column is the product of the
entries in columns A and B. The twelve observations are then listed in column Y. The entries in column I
are then multiplied by those in last column, and the sum is then entered under column I. The entries in
column A are then multiplied by those in last column and the sum is entered under column A. This
column multiplication operation is repeated for the remaining columns in the matrix. The sum under each
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column is divided by 4 to give the corresponding coefficients of the regression model.

I A B AC Y Mean Y 

1
1
1
1

164
41

-1
1
-1
1

86
21.5

-1
-1
1
1

38
9.5

1
-1
-1
1

20
5

(15, 18, 12)
(45, 48, 51)
(25, 28, 19)
(75,75,81)

15
48
24
77

Total
Total/4

Table 10. Sign table for a 22 experimentation with replication

The second step involves calculating SSE. Table 11 shows the estimated response and the errors for each
of the twelve observations. The estimated value for the response variable is calculated adding the
products of the effects (C0, CA, CB, CAB) and the entries (XA, XB, XAB) in the sign table.

Effects Estimated
Response

Mean Response Errors

I A B AB
i 41 21.5 9.5 5 ˆ Y i Yi1 Y12 Yi3 ei1 ei2 ei3

1
2
3
4

1
1
1
1

-1
1
-1
1

-1
-1
1
1

1
-1
-1
1

15
48
24
77

15
45
25
75

18
48
28
75

12
51
19
81

0
-3
1
-2

3
0
4
-2

-3
3
-5
4

Table 11. Errors in each experiment

The sum the squared errors is:

SSE  =  
i j,
∑ei,j 

2 = 02+32+(-3)2+(-3)2+ 02+32+12+(-5)2+(-2)2+(-2)2+42 = 102

Now we want to calculate the variation in the response variable due to each factor or combination of
factors, and to the experimental error. For that aim we calculate SST.

SST = 22r CA
2 + 22r CB

2 + 22r CAB
2 + 

i j,
∑ei,j 

2 = 5,547 + 1,083 + 300 + 102 = 7,032

Factor A explains 78,88% (5,547/7,032) of the variation, factor B explains 15,04% and the interaction
AB explains 4,27%. The rest of the variation, 1,45%, is a variation non explicated, and therefore, due to
experimental errors.

4. Conclusions

In this paper, we presented a possible adaptation of the experimental design techniques used in other
branches of science and engineering to perform experiments in SE.

The objective of the paper is not only to present a means of carrying out formal experimentation in SE but
also to promote discussion and debate on the need to encourage experimentation of the claims in this
field. The software community’s lack of concern for the need for the aforesaid experimentation is slowing
down adoption of new technology by organizations unfurnished with objective data that show the benefits
of the new artifacts to be introduced. This situation is also leading the introduction of new software
technology to be considered as a risk, because, as it has not been formally validated beforehand, its
application can cause disasters in user organizations.

We are aware that software development's marked economic and commercial nature can be a decisive
factor standing in the way of the necessary experimentation, as experimentation does not produce
tangible, short-term benefits. The benefit of experimentation will come to fruition in future development
projects, and this benefit is difficult to quantify at the time of deciding on experimental feasibility or the
number of experiments to be performed. However, as we have already said, experimentation can also stop
industry taking unnecessary risks by adopting proposals that have not been satisfactorily tested.



10

5. References

[Basili, 84] V.R. Basili, B.T. Perricone. Software Errors and Complexity: An Empirical Investigation.
Communications of the ACM, January 1984, pp. 42-52.

[Basili, 86] V.R. Basili, R.W. Selby, D.H. Hutchens. Experimentation in Software Engineering. IEEE Transactions
on Software Engineering, vol. 12 (7), July 1986, pp. 733-743.

[Basili, 95] V. R. Basili. The Experience Factory and Its Relationship to Other Quality Approaches, Academic Press
Inc., Adnvances in Computers, Volume 41, 1995.

[Box, 78] Box, G.E.P., Hunter W.G. and Hunter, J.S. Statistics for Experiments. Wiley, New York, (USA), 1978.

[Clarke, 97] Clarke, G.M. and Kempson, R.E. Introduction to the Design & Analysis of Experiments. Wiley &
Sons, New York (USA), 1997.

[Edwards, 98] Edwards, A.L. Experimental Design. Addison-Wesley Educational Publishers, Delaware (USA),
1998.

[Frankl, 93] P.G. Frankl, S.N. Weiss. An Experimental Comparison of the Effectiveness of Branch Testing and Data

Flow Testing. IEEE Transactions on Software Engineering, vol. 19 (8), August 1993.

[Iyer, 90] Iyer, R.K. Special Section on Experimental Computer Science. IEEE Transactions on Software
Engineering, vol. 16 (2), February 1990.

[Kitchenham, 96] Kitchenham, B. Evaluating Software Engineering Methods and Tools. Parts 1 to 8. SIGSOFT
Notes 1996 and 1997.

[McGarry, 97] F. McGarry, S. Burke, W. Deker and J. Haskell. Measuring Impacts of Software Process Maturity in
a Production Environment. 22nd NASA Workshop on Software Engineering, Maryland, USA, December 1997,
pp. 193-220.

[Pfleeger, 95] Pfleeger, S.L. Experimental Design and Analysis in Software Engineering. Annals of Software
Engineering, vol. 1, 1995, 219-253.

[Prechelt, 98] Prechelt, L and Tichy, W.F. A Controlled Experiment to Assess the Benefits of Procedure Argument
Type Checking. IEEE Transactions on Software Engineering, vol. 24 (4), April 1998, 302-318.

[Seaman, 98] Seaman, C.B. and V.R. Basili. Communication and Organization: An Empirical Study of Discussion in
Inspection Meetings. IEEE Transactions on Software Engineering, vol. 24 (7), July 1998, 559-572.

[Selwyn, 96] Selwyn, M.R. Principles of Experimental Design for the Life Sciences. CRC Press Inc. (UK) 1996.

[Tichy, 93] Tichy, W.F. On Experimental Computer Science. International Workshop on Experimental Software
Engineering Issues. Critical Assessment and Future Directions. Proceedings, 1993, 30-32.

[Tichy, 95] Tichy, W.F. et al. Experimental Evaluation in Computer Science: A Quantitative Study. Journal of
Systems and Software, vol. 28, 1995, 9-18.

[Tichy, 98] Tichy, W.F. Should Computer Scientists Experiment More ? IEEE Computer, May 1998,32-40.

[Zelkowitz, 98] Zelkowitz, M, Wallace, R. Experimental Models for Validating Technology. IEEE Computer, May
1998, 23-31.


